The Junction Diode Curve

In many ways, junction diode (i.e., real diode) behavior is similar to that of ideal diodes. However, there are some important and profound differences!

First, recall the ideal diode current voltage curve:

This curve is piece-wise linear, with two unambiguous regions-reverse bias (where $v<0$ and $i=0$), and forward bias (where $i>0$ and $v=0$).

Now consider the behavior of a junction diode:

Please note that unlike the ideal diode, the junction diode curve:
a) is continuous (not piece-wise linear).
b) Has three apparent regions of operation (not two).
c) Has, therefore, ambiguous boundaries between regions (i.e., continuous transitions occur between regions-the curve has two "knees"!).

By comparison to the ideal diode, we likewise define one region of the junction diode curve as the forward bias region, and another as the reverse bias region.

The third region has no similarity with ideal diode behavior (i.e., this is a "new" region). We call this region breakdown.

Note that the breakdown region occurs when the junction diode voltage (from anode to cathode) is approximately less than or equal to a voltage value $-V_{Z K}$. The value $V_{Z K}$ is known as the zener breakdown voltage, and is a fundamental performance parameter of any junction diode.

As we shall see later, the behavior of a junction diode in the forward and reverse bias region is a predictable result of semiconductor physics! As such we can write an explicit mathematical expression, simultaneously describing the behavior of a junction diode in both the forward and reverse bias regions (but not in breakdown!):

$$
i_{D}=I_{s}\left(e^{v_{D} / n v_{T}}-1\right) \quad \text { for } \quad v_{D}>-V_{Z K}
$$

